
UCRL-ID-139138

Numerical Errors in DNS:
Total Run-Time Error

L:M. Jameson

June 6, 2000

U.$, Del~rtment of Energy~

[~Ve~t’E
Natlc~
Labc~to~’

-.._ /

/
/

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsoredl by.an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulnesS of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, Or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

Work performed under the auspices of the U. S. Department of Energy by the University of California-
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
¯ Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http: / / apollo .osti.gov/bridge /

Available to the public from the
National Technical Information Service

U~S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov / tid / Library.html

Numerical Errors in DNS:

Total Run-Time Error

Leland Jameson

Abstract
Understanding numerical errors in simulations is critical for many reasons.

First and foremost, one must some estimate concerning the reliability of the
final result. Simply put, numerical errors add up over time and in most
cases the increase is a linear process. It is quite possible that running a code
for a very long time can lead to a solution which is completely meaningless
even though it may look reasonable. This manuscript will begin a technical
discussion on these issues.

Contents

1 Introduction 3

2 Generating Difference Equations 4
2.1 Setting up a Linear System 4
2.2 Interpolation 5

2.2.1 Algebraic Polynomials 6
2.2.2 Trigonometric Polynomials 7

3 Error Bounds for Explicit Spatial Operators 8
3.1 Bounds on Differentiation 9

4 Total Error for Space and Time 10
4.1 Runge-Kutta Schemes 10
4.2 The Runge-Kutta Order "Misnomer" 11
4.3 Balancing Temporal and Spatial Errors 12

5 Conclusion 13

List of Figures

2

1 Introduction

To begin, we must make a few statements which are obvious to some and
completely unknown to others. First of all, numerical error do build up over
time and never go away, entropy is non-decreasing. More precisely, if the
build up is linear, as it usually is, then one can expect a final run-time error
to be,

Errorfi~a~ - (Errorpertimestep) ¯ (NumberofTimeSteps). (1)

This very simple expression should always be kept in mind in order to do
back of the envelop estimates. To illustrate, a first order scheme on a grid
of 1024 by 1024 by 1024 will have a per time step error on the order of
10-3 10-4, depending on the details of the scheme. This means that one can
expect to be able to execute only about 1000 time steps before the error is of
the same order as the fields involved. This would be a worse case scenario.

In this manuscript we will explore truncation error of commonly occurring
finite difference schemes and Runge-Kutta time advancement operators.

3

2 Generating Difference Equations

Given a vector of N numbers 97 how can we get an approximate value of the
derivative 37~ at the i- th point and how good will this approximate value be.
Generally speaking, the more elements around the i - th point of 97 that are
used to approximate f’ the better the approximation will be. Common finite
difference formulas are found by fitting a algebraic polynomial of degree q lo-
cally around the i- th point of a vector)rof evenly-spaced elements to obtain
difference approximations of accuracy q - 1. This section will generalize this
concept to find the difference equations of arbitrary accuracy on arbitrary
grids using algebraic, trigonometric, cosine and exponential polynomials. As
special cases, one can obtain all the usual finite difference formulas as well as
the Fourier collocation and Chebyshev collocation spectral differential ma-
trices.

Two methods of generating the differencing coefficients will be introduced.
The first method explains how to set up a system of equations which will have
as a solution the differencing coefficients. The second method is the deriva-
tion of differencing coefficients by interpolation. It is this second method¯

which is used throughout the paper for the actual generation of difference
equations.

2.1 Setting up a Linear System

The problem is to find a set of coefficients {rk} which combines the raw data
in a vector 97 to provide an approximation to a derivative:

k=right

f’(xj): ~ rkf(Xk). (2)

If we require the above equation to be exact for polynomials, algebraic,trigonometric,
cosine or exponential, then a linear system of equations can be solved to find
an appropriate set of differencing coefficients {rk}. Let b(x) denote a funda-
mental basis element from which a basis can generated by taking powers of
b(x): b(x) = x, b(x) i~ , b(x) = cos(x), or b(x) = e~.Thatis, w e require
that the derivative be exact up to a given order N on the numerical grid.
The system of equations to be solved for a centered differentiation stencil is

as follows:
L

= (a)
k=-L

¯ From this equation one can generate a system of equations with N re-
quirements, that N functions be differentiated exactly, and N degrees of
freedom, the N differencing coefficients rk. If one is near a boundary, then
the stenciled is biased. Since this type Of system is well-known for algebraic
polynomials, an example for the less well-known trigonometric polynomials
will be given.

Consider a trigonometric polynomial on a 3 point centered stencil. The
first equation simply requires that the derivative of a constant be zero:

Note that is the same equation as for algebraic polynomials since (x) ° =
(ei~) °. The next two equations come from requiring that the n = 1 mode is
differentiated exactly:

One now obtains the two equations from equating the real and imaginary
parts. These three equations can be solved for the three coefficients r_~, r0, rl.

Similarly, one can find the coefficients for higher order schemes by requir-
ing that more modes be differentiated exactly. Note that no restrictions were
placed on the grid. Differencing formulas can be found on arbitrary grids as
easily as they can be found on uniform grids. Also, note that the Fourier
spectral differentiation matrix can be found from the above procedure by
requiring that the grid be uniform and that the differencing formulas have
maximum accuracy on a given grid. That is, if one is working on a grid
of size 33 then require that the first 16 modes and the zero-th mode are
differentiated exactly.

2.2 Interpolation

A second approach, and the one used in this paper, is to generate differencing
coefficients by first interpolating a polynomial through a set of data, followed
by differentiation of this polynomial and evaluated at a grid point.

The main reason that differentiation was studied with a variety of types of
differentiation operators was to find out if there was any advantage to using,
say, trigonometric polynomials to differentiate as opposed to algebraic poly-
nomials when the function to be differentiated was for example a Gaussian
pulse. It seemed like an appropriate study to undertake given the current
research activity in the area or aeroacoustics where one is often confronted
with the need to computationally propagate some type of wave motion. The
thought was that perhaps trigonometric polynomials might have some ad-
vantage at propagating wave motion over the more common algebraic poly-
nomials. One of the Conclusions of this section is that there is no advantage
and that one should simply use algebraic polynomials for the generation of
differencing equations. In fact, the only important issues involved with ob-
taining approximate derivatives is the order of the finite difference operator
and the density of the numerical grid.

The most important reference for this section is [3]. The following four
subsections will cite the interpolation formulas for the four types of interpo-
lation, and hence differentiation, considered in this section.

2.2.1 Algebraic Polynomials

Interpolation with algebraic polynomials is probably the most common form
of interpolation, and it is from this type of interpolation that common uni-
form grid finite difference methods can be found. Using the following for-
mula one can find the finite difference coefficients for an arbitrary grid and
of arbitrary order. One simply fits the polynomial to the data, followed by
differentiation of the polynomial, and finally one evaluates the polynomial
at the point of interest. The well-known Lagrange interpolation formula for
algebraic interpolation is,

n n

Ay(x)= II (x- zk)l II (xj - (6)
k=O,k~j k=O,k¢j

Aj(xk) = 5jk For given values w0, wl, ..., w~, the polynomial
n

p,,(x) = ~ wkA~(x).
k=0

in P~ and takes on these values at the points xi:

(7)

6

for k -- 0, 1, ..., n.

2.2.2 Trigonometric Polynomials

As seen from the previous section, one can also generate difference operators
by using trigonometric functions as the fundamental interpolation elements.
The following is the appropriate Lagrange-type interpolation formula, see [3]:

For -Tr _< x0 < xl < ... < x2~ < 7r then

The function,

Tj(x) = 1-~ sin-~(X--Xk)/ ~I sin~(xj Xk).
k=O,k~j k=O,k~j

T(x) : ~ wkTk(x)
k=O

is the unique solution of the interpolation problem,

(9)

(lO)

T(Xk) :Wk, (11)

for k = 0, 1, ...,2n. Again, one can derive finite difference coefficients by
interpolating to a function, followed by differentiation of the interpolation
polynomial and evaluation at the point of interest. The following section will
prove that such difference equations obey order properties just as the usual
difference equations derived from algebraic polynomials do.

3 Error Bounds for Explicit Spatial Opera-
tors

Here we will limit our discussion to explicit finite difference operators. First
we ask the question what are bounds for high order polynomial interpolation.

Given a function f(x) we would like to approximate it with a high order
algebraic polynomial PN(X). As we have seen above, the truncation error is,

fN (~) N[PN(X) -- f(x)l- N! II (x - Xk)
k=l

(12)

Now, if we are approximating trignometric polynomials, f(x) = eikx, then
this truncation is bounded by,

kN N

[PN(X) -- f(x)[< ~ II (x -- x}), (13)
k=l

since f’(x) = ikeik~. For the purposes of building centered numerical dif-
ferentiation operators we are interested in the value of this truncation error
when evaluated in the middle of the stencil. We assume that our stencil is
composed of an even number of points. Evaluation of

in the middle of the sencil leads to the product of the distance between the
point of evaluation and each of the stencil points yielding a product such as,

N N/2

II (x - xk) = (h/2) g II (2k - 1)2 (14)
k=l k=l

so that the interpolation error when evaluating in the middle is bounded by,

kN

[PN(x)- f(x)l -’ ~.(h/2)N
N/2

H (2k - 1)2. (15)
k----1

8

3.1 Bounds on Differentiation

Now, if we differentiate this polynomial and evaluate at the middle grid point
we get the error in the derivative is given by,

1
Err = hN((N/2)!)2(N 1)! f(N+l)(~) (I6)

and when applied to trigonometric functions we get,

1 kN+l
(17)Err

hN((N/2)[)2(N 1)
_<

where we recall that h is the distance between grid points, N is the order of
the approximation, and k is the wavenumber of a Fourier expansion.

4 Total Error for Space and Time

The error in a numerical calculation will depend on both the spatial and tem-
poral discretization. Here we consider one common temporal discretization,
Runge-Kutta schemes.

4.1 Runge-Kutta Schemes

~(x, t) = ~(x, (!s)
or on a grid we get,

and this has the solution

~(t) = Da(t) (19)

?~ = eDt?~0. (20)

We can think of the time advancement scheme in terms of the expansion of
the exponential eTM, i.e.,

(DAt)~ (DAt)N+leD~)g(O),
(21)ff(At)=(I+DAt+...+ N! + g + l!

for some ~ e [0, At]. Or we can write,

(OAt)N
g(At) = (I + DAt + ... + N! + TEtime)go, (22)

In the above expression, D is the exact spatial differentiation opera-
tor. An approximate differentiation operator Dapprox will be such that D =
Dappro~ + Der~o~. Inserting in the above expression we get,

(Dapprox + DerrorAt)N
g(At) = (I + (Dapp~o~ + D~rror)At + ...

N! + TEtime)~o.

(23)
One can see from this expression that the leading order sources of error in
this Runge-Kutta discretization will be,

Eleadingorder = De~orAt + TEtim~. (24)

For practical reasons, let’s replace the temporal truncation error with an
upper bound when applied to Fourier modes, u(O) = ik~. We get,

(At)P~+~ kP~+~, (25)MaxTEtime - (Pt + 1)!

10

where Pt is the order of the temporal discretization. We recall from above
that upper bound on the spatial differentiation operator is,

Derrorma~ = (Ax)P8 (Ps/2)1)2 kPS+l (26)
(Ps + 1)!)

At each time step we can now see that the error is increased by,

AErrmax = Der~o~,,~a~At + MaxTEtime (27)

so that after N time steps we arrive at an error of

Etotal = N(AErrmax) = N(Der~o~ma~At + MaxTEtim~), (28)

where N is set such that Tfinal = NAt.
expression we get,

Now, substituting into the above

Etotat N((Ax)gs (Ps/2)!)2kp~+l~A~______(A+~P~+I (29)

(A÷hPt+l

~) kP~+l~ (30)Etotal Tfinal ((/kX) P~ (Ps/2)])2kPs+l~At- At (P, + 1)! ’ +
Now divide out the At to get,

(P~/2)!)2kp~+l +E~o~o~ = TI~o~((A~)~ (p~ + 1)!

4.2 The Runge-Kutta Order "Misnomer"

With Runge Kutta methods we should make a short comment with respect
to the use of the word order. First of all, a p order Runge Kutta time
discretization of,

fit = Off (32)
is equivalent to,

(OAt)p
RKp = I + BAt + ... + p! (33)

which will have a truncation error of the form,

(DAt)p+I
TERKv(At)- (p+ 1)! (34)

11

So, if we construct u(At) from u(0) then our truncation error is on
order of (At) p+I which could be called a p + 1 order approximation. To
illustrate, suppose that we begin with an approximation to u(At) and
now divide At by 2 then the approximation to u(At/2) will certainly have
the truncation error written above as TERKp. However, originally we wanted
an approximation not at At~2 but at At requiring a second time step at
At~2. In general, as our At is reduced in size by N then we must take N
time steps to compensate and this process reduces the order by one.

4.3 Balancing Temporal and Spatial Errors

Typically we call the restriction of the time step as a function of the space
step the CFL condition. Typical relationships between the time and the
space step are At = C1Ax and At = C2(Ax)2. The following relationship
was found above,

(At)P~-I
(Ps/2)!)2kP~+l + kPt),Eto,az = T~ino~((Ax)P" (Ps 1) P,! (35)

and if we now incorporate a CFL condition into this expression then we will
have a better idea of how to choose numerical orders of accuracy in space and
time. Assume that At = C(Ax)m and substitute into the above expression
to get,

(Ps + 1)!
+ ~tT~j

From this expression we can see that an effective numerical scheme is one
where the spatial and temporal errors are balanced. In other words, if one
has a spectral scheme in space and a, say, 4th order Runge Kutta scheme in
time and a CFL such that At ~ Ax then the spatial errors will be orders
of magnitude smaller than the temporal errors and the extra work in space
could possibly be for nought.

12

5 Conclusion

This document is meant as a first in a series which will discusses carefully
and precisely numerical errors. A careful understanding of numerical errors
is critical for proper DNS or all flows but particularly turbulent flows. It is
critical that numerical errors have a smaller affect on the flow than, say, a
turbulence model. And, for low order numerical schemes this will often not
be the case.

13

References

[1] G. Dahlquist and A. Bjorck, (1974) "Numerical Methods", Prentice-
Hall.

[2] I. Daubechies, (1988) "Orthonormal Basis of Compactly Supported
Wavelets", Comm. Pure Appl. Math., 41 pp. 909-996.

[3] P.J. Davis, (1975) "Interpolation and Approximation", Dover.

14

